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Figure 1: Geo word clouds of cheese production in France (left: orthogonal, middle: 45 degrees, right: 10 degrees).

ABSTRACT

Word clouds are a popular method to visualize the frequency of
words in textual data. Nowadays many text-based data sets, such as
Flickr tags, are geo-referenced, that is, they have an important spa-
tial component. However, existing automated methods to generate
word clouds are unable to incorporate such spatial information. We
introduce geo word clouds: word clouds which capture not only the
frequency but also the spatial relevance of words.

Our input is a set of locations from one (or more) geographic re-
gions with (possibly several) text labels per location. We aggregate
word frequencies according to point clusters and employ a greedy
strategy to place appropriately sized labels without overlap as close
as possible to their corresponding locations. While doing so we
“draw” the spatial shapes of the geographic regions with the corre-
sponding labels. We experimentally explore trade-offs concerning
the location of labels, their relative sizes and the number of spatial
clusters. The resulting word clouds are visually pleasing and have
a low error in terms of relative scaling and locational accuracy of
words, while using a small number of clusters per label.

Index Terms: 1.3.3 [Computer Graphics]: Picture/Image Genera-
tion
1 INTRODUCTION

Word clouds are a text-based visualization highlighting important
keywords in large amounts of text, emphasizing more important or
frequent words by a larger font size. Due to the popularity of this
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visualization method, there are many recent studies on word clouds,
on topics ranging from usability issues [12], over the visualization
of dynamic text content [4], to the appropriate ranking of the words
to be visualized in large volumes of Twitter data [9].

Many text-based data sets, such as Flickr tags, have an impor-
tant spatial component. It hence seems natural to incorporate this
spatial component when creating word clouds. Consequently there
are many (manually crafted) examples of “word cloud maps”, that
is, geographic maps which are composed solely of words! (often
names of regions). However, existing automated methods to gener-
ate word clouds are unable to incorporate such spatial information.

In this paper we propose an automated method to create geo word
clouds: spatially informative word clouds (see Fig. 1). Our word
clouds capture not only the frequency but also the spatial relevance
of words. Furthermore, they “draw” the geographic regions, from
which the input is taken, to both attract attention and to give visual
cues to identify locations.

In Section 2, we formally define geo word clouds, give exact
requirements and specify corresponding quality measures. In Sec-
tion 3 we then present a greedy algorithm to compute geo word
clouds. An appropriate coloring scheme is an important part of
word cloud design. In Section 4 we hence explain our design
choices with respect to color in detail. There are several parameters
to choose when generating geo word clouds, such as rotation angles
for the words, (relative) font sizes and the amount of clustering of
the input. In Section 5 we experimentally evaluate how different
parameter choices influence the quality of the resulting geo word
clouds and explore trade-offs between different requirements. We
can conclude that the geo word clouds generated by our greedy al-
gorithm are visually pleasing and satisfy our quality criteria well.
Finally in Section 6 we discuss various ways to extend our current
approaches to different scenarios and requirements.

Related work. Possibly the best-known algorithm for word cloud
generation is the one by Wordle [17]. It utilizes a simple greedy
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approach to produce visually pleasing word clouds. Barth et al. [1]
consider a scenario where a set of words is given with adjacency
information, that is, the relative positions of words in a word cloud
are pre-specified. They show that in general, the problem of cre-
ating word clouds, while respecting adjacencies between words, is
NP-hard. They consequently present an approximation algorithm
for this problem. Both of these algorithms do not consider spatial
locations and hence cannot be used to produce geo word clouds.

There are various methods similar to our approach, but none are
directly comparable. Chi et al. [3] propose morphable word clouds,
where a sequence of spatial shapes is “drawn” with a time-varying
set of words. To fill up the shapes they use a greedy algorithm,
but when placing the words no spatial constraints are taken into
account, while this is of importance for geo word clouds. More-
over, they use rigid body dynamics to displace the words over time
while enforcing constraints. Their work is mostly focused on the
temporal aspect, that is, arranging the time-varying sets of words
within the morphing shapes such that the evolution of both word
clouds and shapes can be easily tracked by the user. Our algorithm
and constraints, however, focus on the spatial scenario where ev-
ery input location can have multiple labels and each word can label
many different locations. Our algorithm hence have to cluster la-
bels appropriately and be more flexible when optimizing both the
clustering and the placement of words.

Related to both our work and classic map labeling are fag
maps [8, 13] which are intended to “expose textual topics that are
tied to a specific location on a map”. Tag maps place the tags at a
fixed location on a map with a size corresponding to their impor-
tance (thus, in fact, creating a graduated symbol map with varying
text symbols). Since the locations for all tags are fixed, overlaps
between tags frequently occur. In contrast, it is central to geo word
clouds to avoid overlap.

There is an extensive body of work on automated label place-
ment for point features [18]. Map labeling is loosely related to geo
word clouds, but there are some crucial differences. First of all, our
word clouds are the map and as such, cover space (more or less)
completely. Second, we do not label specific features but instead
are summarizing spatial word data. Hence we have considerably
more flexibility in placing words and in deciding how to aggregate
data associated with the same word. Finally, when labeling maps, it
is common to omit labels to avoid clutter. For our geo word clouds
it is of utmost importance to show all labels of high relevance. So
the common algorithmic approach of maximizing the number of la-
bels placed is not applicable (instead one could consider a variant
of maximizing the size of labels [6]).

Geo word clouds are an abstract representation of spatial data.
Since the word size is scaled according to importance, they have a
certain resemblance to cartograms. Cartograms convey values per
region and several types of cartograms represent regions by simple
geometric shapes, such as circles [5], squares or rectangles [11],
scaled according to the value associated with the region. How-
ever, the challenges for generating word clouds differ considerably
from those for cartograms: cartograms are based on a subdivision
of space into regions, which provides a starting point for an overlap-
free placement. In contrast, placing words very close to the corre-
sponding data points in a word cloud, naturally will lead to consid-
erable overlap, which needs to be resolved.

Ignoring the issue of overlap it would seem natural to use rect-
angular cartograms to generate word clouds. However, methods
to generate rectangular cartograms (for example [2, 16]) place a
strong emphasis on maintaining adjacencies between regions and
as a result limit the freedom of choosing the aspect ratio of rectan-
gles. Such region adjacencies are of little importance for geo word
clouds, but being able to choose aspect ratios is of high importance.
It hence seems unlikely that methods for rectangular cartograms
can easily be adapted to generate geo word clouds.

2 GEO WoRD CLOUDS

Our input is a set of n points (locations) py,...,p, in R? which
are located inside a geographic region M. Each point is associated
with one or more words w; from a list of m words wy,...,w,,. Each
word has a specific shape, namely the outline of the word spelled
in a specific font chosen by the user. Furthermore, the user can
restrict the possible (degrees of) rotation of words in the output. As
customary with word clouds, more frequent (important) words are
drawn using a bigger font size. Finally, the words should be placed
in spatial proximity to their defining points. Given this input, we
want to create a geo word cloud (a set of word shapes M’) which
fills (and hence draws) the geographic region M.

2.1 Requirements

Requirement 1 (R|) All word shapes are disjoint.

Requirement 2 (Ry) The geo word cloud has a small number of
shapes per word.

R; prevents valid outputs that are not interesting. See Table 1 where
every point in the input is represented by an individual word. In-
stead, if points associated with the same word are relatively close
together, we want to place a single bigger word shape in our word
cloud which ideally covers the points. To do so, we cluster the
points associated with a single word (see Section 3) and place a
single shape per cluster, sized according to cluster size. R, is hence
intended to keep the clustering from overfitting.

Requirement 3 (R3) Shapes of a word cover its points well.

To emphasize the spatiality of geo word clouds, we ensure that the
shapes in our output are close to their corresponding data points.
See Table 1: the more points are covered by a word and the smaller
the distance between the word and the points that are not covered,
the better the word represents the spatial data. In subsection 2.2 we
show how we measure the error for the points that are not covered.

Requirement 4 (R4) A word with k points has a total area as close
as possible to %M'.
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Table 1: Requirements and measures.



The size of a word should give the reader a good indication of the
importance of the word. See Table 1: one word has three points,
while the other has only two. To express this in the word cloud, we
want a ratio of about 3 : 2 when it comes to the area of the words
representing these points.

Requirement 5 (Rs) M’ covers input area M well.

Rs ensures that the outline of M becomes visible in the output, and
that the word cloud we generate is dense. We want the shapes of
M’, to stay inside M, but at the same time do not leave too much
white space.

Requirement 6 (Rg) Shapes of a single word have the same color.

Rg ensures that geo word clouds look consistent and that it is easy
to find multiple instances of the same word. However, human users
cannot distinguish many colors. Hence we developed a careful
scheme to reuse colors, see Section 4 for details.

Requirement 7 (R7) Coloring should distinguish different words,
but should not draw too much attention to particular words.

The last requirement should help a reader of the geo word cloud to
find different words, but at the same time make sure that only the
font size and number of occurrences of a word inform the reader of
its importance. R5 and R; together put emphasis on the size of the
word as the only indicator for its importance. See Table 1: we can
see that the word Green has different colors in the first case, and the
green color is a lot brighter than the blue one. The second color is
a lot easier to read and visually pleasing. Section 4.2 explains how
we ensure that different words with the same color are still clearly
distinguishable.

2.2 Measures

To evaluate the quality of the geo word clouds generated by our
algorithm we define three quality measures. Intuitively speaking,
geo word clouds that score well on the first two measures consist of
words which (mostly) have the right size and are (mostly) placed at
the correct location. This is a necessary condition for the user to be
able to use our word clouds effectively. The third measure ensures
that the spatial shape is drawn appropriately, which is an impor-
tant clue for the user to be able to accurately determine locations.
Hence these measure ensure that our geo word clouds add spatial
information to word clouds in a meaningful way.

When computing geo word clouds we need to make careful
trade-offs between the various requirements. For example, to fill
up the whole area (Rs), we might have to scale some words down
to fit them (R4). Furthermore, it might be better to make a reason-
able coverage error on two words, instead of placing one perfectly
and having a huge error for the other word (R3).

As stated above, we cluster the data points of each word and
then associate each cluster with a single (scaled) shape. To measure
whether the shape of a cluster covers the points in that cluster well
(R3), we use the Hausdorff distance. For each point in the cluster,
we measure the Hausdorff distance from this point to the bounding
box of the shape. Points that are covered and are inside the bound-
ing box of the shape have distance zero, while for points that are
not covered we take the distance from the point to the bounding
box. The sum of the distances for a single word is the error for that
particular cluster.

Table 1 shows which points add to the coverage error and how a
good placement of a word can decrease the error. The sum of the
error for all points measures how well all shapes in M’ cover the
whole data set.

Let Hausdorff(p,r) denote the Hausdorff distance between a
point p and a rectangle r and let ¢, denote the cluster to which
point p belongs. We define word(c),) as the bounding box of the
word associated with cluster c.

Measure 1 (M) The coverage error for all points in M is
Y pem Hausdorff (p,word(cp)).

It might be necessary to slightly reduce the size of some words, to
find a suitable position for them. We want to measure how well the
words represent the number of points they visualize. For a word
with & points, which is scaled by factor x, the number of points that
are not represented is |k — k- x|. Let C be the set of all clusters, and
define Rep(c) the value we defined for the number of points that are
not represented by the word of this cluster.

Measure 2 (M,) The percentage of points not represented is
LeecRep(c)
o .

If words may be scaled by a factor x > 1, M, can be over 100%.

Next we want to measure Rs: how well does M’ resemble M.
An effective way to do this is calculating the symmetric difference
between M’ and M: parts of M that are covered by M’ do not add to
this measure, but area that is not covered and covered area outside
of M increases the measure. This is indicated by the colored area in
Table 1. We can also see that choosing an appropriate global scaling
for the words helps reducing the symmetric difference. Since we
require the words to be disjoint, we know that the symmetric differ-
ence will not be lowered by overlapping words. We use a bounding
box per shape for this measure, since users tend to mentally aggre-
gate the letters, the space between letters and also the space around
the ascenders and descenders of the word with the word itself.

Measure 3 (M3) The symmetric difference between M’ and M.

3 PLACEMENT ALGORITHM

Placing a label for each point would clutter the map (see Section 5
for a more detailed discussion). Since we want to place bigger
words whenever possible, we use k-means to cluster points with
the same label and place for each cluster a single word. The size
of the word depends on the number of points in that cluster. The
points are clustered multiple times with an increasing number of
desired clusters, to optimize the number of clusters. The best num-
ber of clusters is found when the error, the distance to the centroid
of a cluster, is small. We add a penalty term to the error for adding
extra clusters to ensure that we do not keep on adding clusters to de-
crease the error. We select the clustering that minimized the error
including the penalty term.

After clustering we determine suitable values for rotating the
word of each cluster. We determine the eigenvector of the points
in the cluster and use the principal component of this vector. This
gives the rotation of the word which minimizes the error to the
bounding box of the word. We allow the user to restrict the pos-
sible rotations: orthogonal, 45 degrees, etc. For each word we then
choose the rotation that is closest to the orientation of the principal
component (see Fig. 1 and 2 for examples).

We use a greedy strategy to place the words. For this the words
are sorted by the size of their point cluster and the placement is per-
formed from the bigger to the smallest cluster to avoid large errors
for bigger clusters. We compute the word placement pixel-based.
Per pixel we store whether it is occupied by a word or not. The
positions in which a word can be placed are obtained by a uniform
filter, i.e. a convolution that considers only the bounding box of the
word. When we actually place a word, we only set the pixels that
overlap with the actual shape of the word.

At each iteration a word is selected from the top of the list and
its best placement is computed. The best placement is a trade-off
between the size of the word and the error we make: if a word
cannot be placed at its exact position, we try to scale it down, so
that the distance between the center of the word and the centroid of
the cluster can be smaller. If we scale a word down, we again place
it in the list and process it again when the scaled word is the biggest
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Figure 2: Geo word clouds of Flickr tags in Great Britain and Ireland (left: orthogonal, middle: 45 degrees, right: 10 degrees).

word in the list. Furthermore, if we do not place the word close to
the cluster, we decrease its size, since we cover less points with this
word now. If we would keep the word at its original size, we would
give the user the impression that there are a lot of points around the
position of the word, while there might not be many at all.

The scaling of the words uses a finite number of values uniformly
distributed from s = 0.05 to s = 1.0 times the desired size (with
steps of 0.05). A penalty is introduced both for scaling a word and
for moving it away from its desired position. The final penalty is
computed as a weighted average o - (1 —s) 4 (1— ) - 8 /+/A where
0 is the distance between the word placement and the centroid of
its cluster and A is the area of the rectangle bounding our region
M. « is used to influence how important each part of the penalty is.
Currently we use o = 0.5. The best placement can now be defined
as the placement with the lowest penalty. In the case of different
options with the same penalty, the one with the highest value of s
is preferred. If a map consists of two disjoint regions (see Fig. 2)
we ensure that words that should be placed in one region cannot be
placed in the other one.

It remains to discuss how the optimal size of each word is de-
termined. As Ry suggests, the preferred font size is determined by

Algorithm 1 Greedy geo word clouds

M < acquire shape
D < load data set
C < create clusters from D
for all c € C do
assign font size to ¢
assign rotation to ¢

P < sort C (biggest first)
for all c € P do
p < find best placement for ¢
if p.size < minimal size then
break
if p.percent < 100% then
adjust font size of ¢
keep cin P
reorder P
else
place c inside M
remove ¢ from P
update the available space

return M

computing the font size which renders the word in a bounding box
of area k- Ay /n, if the cluster for that word has k points and the
whole data set has n points. The value Ay, is the area of M in our
pixel-based image, measured in pixels. We stop the algorithm if the
words become too small, either because their cluster size is small,
or they are scaled down by a large amount. Algorithm 1 shows
pseudocode for the greedy approach.

4 COLORING

The first figure in [17] shows a Wordle with its standard coloring.
We can quickly see that Rg is not satisfied, since the word Wordle
and Visualization both occur twice, but have different colors. Fur-
thermore, except for the big occurrence of Wordle, nearly all big
words use the light grey color, and nearly all smaller words a shade
of red/brown. Below we describe our approach to compute a better
coloring.

Two of our requirements, namely Rg and Ry, concern the col-
oring of the geo word clouds. Our algorithm adheres to these re-
quirements (see, for example, Fig. 1, the word Tomme has the same
color everywhere). We choose our colors from a Hue-Chroma-
Luminance (HCL) color model to ensure that no color (and hence
word) is perceived to be more important than others. At this point
we do not use color to group semantically similar words or to evoke
associations (sea and sky in Fig. 2 are not both blue, in fact, neither
is). Our only goal is to assign colors in such a way that the different
words and their sizes in the word cloud can be identified as easily as
possible. We cannot use a different color for each word, since the
number of colors needed would exceed what users can perceive.
Instead we use a small fixed colour palette and ensure that words
which are similar in size are unlikely to have the same color.

4.1 HCL color maps

HCL color maps have “well balanced perceptual properties” as ar-
gued in [15]. By keeping the Chroma and Luminance on the same
level, we can create a qualitative color map containing colors that
are uniformly distributed over the whole Hue spectrum. These col-
ors are very similar in brightness and none of them attracts more
attention than others. We choose such a qualitative color map of 13
colors which are still distinguishable enough.

Another way of creating HCL color maps is by keeping the
Chroma on the same level, choosing a single Hue and having a
variable Luminance. This results in single Hue, sequential color
maps. Fig. 3a shows a geo word cloud when such color map is
used. This is a nice variation, but arguably qualitative color maps
make it easier to distinguish words.
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(a) Sequential “cheese” colors. (b) Grayscale dependent on font size.

Figure 3: Geo word clouds of France: different color maps.

4.2 Color distribution

We want to use a small number of colors, but still distinguish words
well. Therefore, we use an algorithm that assigns different colors to
words of similar size, but reuses them after they have all been used.
Assume the use of a color map of / colors uniformly distributed over
the whole Hue spectrum [coly, ...,col;_1]. Colors are assigned in
decreasing size of the words. We start from the biggest word and
assign a color coly in our color map to this word.

The next word in decreasing order of word sizes, gets a color
c0l(iy¢) mod > Where c is relatively prime to / and i is the index of
the previously used color. Hence we ensure that all colors are used
before using a color twice, etc. For most of our maps, we have used
a color map of [ = 13 colors, which is a prime itself. Therefore we
can choose any value for ¢, for example ¢ = 3 (see Fig. 4). Using
this algorithm to assign colors in descending order of font size, we
make sure that words that are similar in size get a color that is at
least ¢ colors away from the previous color. Since we have chosen
¢ > 1, colors that are assigned consecutively will be quite different.

)

Figure 4: HCL color map, selecting consecutive colors.

By the time that we use the same color, or a similar one again,
the words that we assigning the color to have shrunk in size and are
distinguishable by size already. For the smallest words the previ-
ous might not hold. However, there are many small words and the
chance of two adjacent words getting the same color is very small.

These claims are supported by Fig. 3b: We see that there are not
many black or dark gray words, which means the biggest words
will all get very distinguishable colors. The space between these
big words is filled with light gray words and the space that is left
is filled with nearly white words. The chance of two adjacent light
gray or two adjacent white words to have the same color is small.

5 EXPERIMENTS

We tested the algorithm on two different data sets. The first data
set is about cheese produced in France and has been constructed
manually from different websites, starting from a list of producers?.
The data set contains 95 producers of cheese with 125 unique tags,

’http://www.monmenu.fr/s/exploitations/Liste-Pro
ducteurs-De-Fromages—cat03500

i.e. types of produced cheese. The second data set is filtered from a
Flickr data set with geo-tagged photos [10]. We filtered the data set
keeping only Great Britain and Ireland, selected the most frequent
tags and removed those that are about the camera or mode in which
the photo was taken. The resulting data set contains 545,140 images
with 126 unique tags.

The algorithm described above was implemented using
Sage [14], a Python based mathematical software package. We use
Sage Math Cloud to run the experiments. The platform is a web
based solution which provides a hosted instance of Sage. The hard-
ware quota consists of 4 Intel(R) Xeon(R) processors with a clock
speed of 2.30 GHz and 4 GB of RAM.

In the experiments we use the measures as described in Section 2.
However, we make some changes to the measures to make maps of
different sizes comparable: the coverage error is measured as the
total sum of distances and we divide this error by the diagonal of
the map. Looking at the error in percentages expresses the amount
of displacement relative to the diagonal. We measure how much of
the map is filled by measuring the symmetric difference.

The symmetric difference is normalized to the unit interval and
expresses the percentage of the map that is not covered by words.
We measure the percentage of points that is not represented by the
words as stated earlier: for each cluster we look at the number of
points that is not represented, take the sum for all the clusters and
divide by the total number of points.

Below we describe several experiments. We start by testing the
influence of the allowed rotations i on the geo word cloud. We then
test different settings for the initial font size and the clustering. We
also illustrate the word placement of our algorithm and discuss the
running time of our computations.

5.1 Allowed rotations

One of the input parameters determines the allowed rotations that
words may have in the output. The algorithm determines the orien-
tation of a cluster using the principal component of its points. We
test the algorithm by allowing rotations of 90°, 45° or 10°. Fig. 1
and Fig. 2 show respectively France and Great Britain plus Ireland,
with different parameter values for the allowed rotations. In gen-
eral, the choice of orthogonal words produces a map which is more
evenly spaced. The words are tightly packed together and the tex-
ture is more uniform.

The part of the map concerning Ireland looks sparse because the
amount of tags included in the data set was more dense in Great
Britain and the algorithm tries to preserve the relative scaling of
words. For this reason, not every region is guaranteed to be filled
uniformly, when the map consists of multiple separate areas.

Adding more allowed rotations decreases the compactness and
has the risk of producing a non-uniform texture. This is especially
true in the case of France, where the data set contains less words.
Such choice for the rotations has a minor impact in the case of Great
Britain and Ireland. This happens because the presence of many
more tags allows to fill the gaps left by rotated words.

A positive effect of more rotation options is that words in Ireland
tend to spread more and the result is less sparse. Finally, we note
that the structure of a specific data set may help. Since most clusters
in Great Britain have a strong vertical orientation, the result looks
more uniform, even when having more freedom in the rotations.

Table 2 and Table 3 show the coverage average error per point,
percentage of words not represented and the symmetric difference
for the allowed rotations for the data sets France and Great Britain
plus Ireland. The coverage error is smallest when allowing rotations
of 90°. The difference in error between the geo word cloud that uses
90° and the one that uses 45° is only 0.69%, which is acceptable.

By allowing more rotations words are placed in a lot of differ-
ent orientations such that placing all words becomes difficult. The
result of this is that words get scaled down, which explains why



Allowed Coverage  Words not  Symmetric

rotations error represented  difference
90° 7.31% 11.28 % 22.26 %
45° 8.00 % 14.19 % 24.08 %
10° 8.74 % 15.88 % 2541 %

Table 2: Metrics on allowed rotations (France)

Allowed Coverage  Wordsnot  Symmetric

rotations error represented  difference
90° 10.43 % 25.18 % 3593 %
45° 10.90 % 27.55 % 37.93 %
10° 10.63 % 30.40 % 38.53 %

Table 3: Metrics on allowed rotations (Great Britain and Ireland)

the percentage of words that are not represented increases when the
number of allowed rotations increases.

The symmetric difference is smallest when only allowing rota-
tions of 90°, which matches our observation that the geo word cloud
looks more packed.

Comparing the measures of the two data sets shows that France
is covered better than the Great Britain plus Ireland, based on the
symmetric difference. Ireland has a large influence on this value,
because the data set contains less points for Ireland relative to Great
Britain and we want to preserve the relative scaling.

We can aim to combine the positive effects of fewer and of more
rotation options by restricting the rotations based on the importance
of a word. Fig. 5 shows such a word cloud: the biggest 10 words
are orthogonal, 40% use 45°rotations and all remaining words 10°.
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Figure 5: Allowed rotations based on size of words with smaller
words having more allowed rotations.

5.2 Initial font size

R4 of the problem formalization states that a word with k points
should cover a total area as close as possible to kM’ /n, where n is
the total number of points and M’ is the total area of the map. This
suggests to start with a font size of a word such that this requirement
is satisfied. We define this as the 100% initial font size.

During the algorithm some words cannot be placed nearby. A
word of this kind is scaled down and reinserted into the list of words
to handle. Scaling a word without also scaling other words intro-
duces relative scaling errors. We try to prevent this if possible. This
can be done by starting with smaller initial font sizes.

Table 4 shows the coverage average error per point, percentage of
words not represented and the symmetric difference when starting

. . Coverage  Words not ~ Symmetric
Initial font size .
error represented  difference
100% 731 % 11.28 % 22.26 %
90% 8.39 % 9.13 % 25.94 %
80% 7.59 % 4.17 % 27.42 %

Table 4: Metrics on initial font size (France)

with 100, 90 or 80 percent of the optimal size, for the France data
set. We observe that decreasing the initial font size from 100%
of the optimal size to 90% increases the average coverage error.
The reason for this is that all words get smaller, including the large
words such that they probably cover less points of their cluster. The
distance from the points to those large words is now also increased.
Decreasing the initial font size further to 80% gives a smaller error
again, because the words are placed closer to their desired location.

By decreasing the initial font size more words can be placed at
that initial font size. Therefore, the percentage of words not rep-
resented decreases. While this percentage goes down when care-
fully decreasing the initial font size, the symmetric difference in-
creases. This can be explained by the fact that all the words are
simply smaller, which leads to less coverage of the map as a whole.

Although experimental data favors selecting an initial font size
of 80%, visual inspection shows that there are regions which are
not filled nicely. Particularly for France, the Bordeaux region starts
to contain white areas if we lower the initial font size.

5.3 Clustering

Placing a word for each point in the map will generate a word cloud
where it is difficult to find frequent words, as can be seen in Fig. 6a.
Some measures for these kind of maps will be low, but these maps
do not give an informative view of the data. The other extreme
is to use a single cluster for each word type, as shown in Fig. 6c.
This groups all words of a tag together. The disadvantage is that no
regional differences can be seen anymore. Our approach performs
clustering but preserves clusters that are far apart. The resulting geo
word cloud, as can be seen in Fig. 6b, mediates between these two
extremes. Multiple regions where tags are used can be observed,
but the number of words per tag are not too large.

Table 5 shows the coverage average error per point, percentage
of words not represented and the symmetric difference for three dif-
ferent types of clustering. The average error increases when points
are clustered. This means that more points are placed further away
from the position where they should be placed. This is as expected,
since now a point may have to be placed further away to cover other
points of the bigger cluster as well.

If no clustering is applied multiple words cannot be placed at
their position. These words have the same position, such that the
words have to be scaled down in order to place them. When words
are clustered less scaling is required, because the word can be
placed closer to their position. The result is that the percentage
of words not represented decreasing when applying clustering.

The symmetric difference is lowest when k-means clustering is
applied (see Table 5). When more clustering is used the clusters are

Clustering t Coverage  Wordsnot ~ Symmetric
ustering type error represented  difference
No clustering 6.02 % 23.62 % 27.05 %
k-means clustering 7.31 % 11.28 % 22.26 %
One cluster per word ~ 11.18 % 11.22 % 24.51 %

Table 5: Metrics on type of clustering (France)



-
Va\ame Récollet|
Marsllcstiagine Fai

n
me, Muns(cheanelT fnerf‘z

Crottin
Tomme

F‘ omme <N i Bache
Bfehlzouh.sseue Fa‘“e"eBrcss
U Faisselle Pyramide Fa\sselleR“lC“C ro
Taselle Crottin_BriqueBeuchon R

Faissalle ChablsPtt PaulCrottin
Pyram; Biich omme ivry
B*-‘“Sﬁvgﬁ’mﬂ Fhisssllolomme Crottin T
aisgelleLong.....__Cabotin Crottin “~~50MMe

ePalet BriqueRa. aclettePortionfomme

A< habis Brique RacletteBlche 1ol 2

ide Faisselle Faisselle s Tomme Crottin Sérac

Gouda

o

Tomme
mm

Gaperongic i D€

Pyramide ool raroralg let Tor

mime
Faisselle Fasselle J°meeCa\”0uGa|e[ Bleg

Pyra
yTw

St Paulln

on® CalouU'CD',-'-C
S INP(tawe
ais Portion,
P CharCaboingl
GomembertpaCooiol
SR Eaee Dl
Fourme. dAka:rrthod n

e blanc roe s

Récollet Maroilles
avé Camembert
peedeFatat, Roug o a\ameVM ad?ux\q)M
5 > o Chghn GrisMimo ette:
roc 0T Vcoree._Berave
Soarkess BARRIEY.... Beau myém Pt N NameauBrlemBmsse
§ TchicT c= Stjaoua ou a o
o Claquebitc I o
a I s e e Faul

e=
‘7 Bouchon'U

5§ Marzcellmq mCalo
ey A Picodon@) £ 2

Bleul.(l‘_uo

alet
Trésor| Calliou

- v o S 3.Pavé
GOl Bout
Sk c
omme Pelardonpave @-C 0
*Blch v
Tomme -9
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Figure 6: Geo word clouds of French cheeses: extreme cases for clustering.

bigger, the words will have a larger font size, making them harder
for words of similar size to stack nicely and fill up the map.

We conclude that the extreme cases of clustering do not work
well for our problem and that our clustering is a better fit.

5.4 Word placement

To illustrate how our algorithm places words, we generated point
maps which show the clusters and placements for the first three
words of the French cheese data set (see Fig. 7). Tomme is the most
frequent cheese and hence the first to be placed. The clustering
generates two clusters of points, indicated by disks and crosses in
Fig. 7a. The right Tomme is placed next to the boundary of France
such that it covers many disks. The locations for the left Tomme are
more widespread, so there is no unambiguous location for Tomme.
It is placed as well as possible.

The second most frequent cheese is Faisselle. Also here the clus-
tering returns two clusters (see Fig. 7b). The right Faisselle cannot
be placed at its optimal location, because Tomme is already placed
and Faisselle is too large for the space left. Given this restriction,
Faisselle is placed such that as many points are covered as possible.

The third most frequent cheese is Crottin. Its locations are also
divided into two clusters. The points for the right Crottin are
spread. Given that Tomme and Faisselle are already placed, Crottin
is placed such that it covers as many points as possible (see Fig. 7c).

5.5 Running time

The experiments are performed using Sage Math Cloud. The place-
ment algorithm runs on average in 30 minutes on the France data

x® ‘.

(a) Placement of Tomme.

(b) Placement of Faisselle.

set and 60 minutes on the Great Britain plus Ireland data set when
the allowed rotations are 90°. Increasing the allowed rotations to
10° increases the running time by 60%. Preprocessing the data
set including clustering and normalizing takes only seconds for the
France data set, but takes several minutes for the Great Britain and
Ireland data set, which has thousands of annotated images.

6 EXTENSIONS

Our current algorithm focusses on finding a word cloud where the
distance from data points to their visual representation is low. We
discuss several extensions that expand or change the current re-
quirements. Furthermore, we discuss different kinds of data that
would also be suitable for this kind of visualization.

A natural extension of our current requirements would take into
account the directional relations between words. A second possibil-
ity is to determine the font size of a word not by the size but by the
area of the corresponding point cluster. Hence a spread out cluster
of points would be represented by a larger word than tightly clus-
tered points. This kind of requirement deviates further from tradi-
tional word clouds (where size directly corresponds to frequency),
but would put more emphasis on the spatial properties of the data.
Alternatively, we could use a Voronoi diagram of the data points
and use the area of the Voronoi cells of a cluster to determine the
font size. As the size of the point set increases, the sum of the areas
can be expected to approximate frequency.

We could also create geo word clouds for statistical data which is
aggregated by area (like wine production or population). We have
two clear options for spatially informative word clouds using this
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(c) Placement of Crottin.

Figure 7: Point maps for Geo word clouds of French cheeses: placing the first three words.



kind of data. First, we could define a good placement of the word as
one where the word overlaps with the area in some way. If the word
fits in the area, the best placement would be inside it, otherwise
completely covering the area would be the best placement.

We can fit this new problem in the problem description we are
currently using. If we overlay the map with a grid and put a data
point on each grid point, we get more data points in big areas and
less data points in smaller areas. We can use our current algorithm
to produce an output on the data points we get in this way, to solve
the problem for areas. Another option is to always require words to
be inside the area. This way, we create small instances of the bigger
problem within the different areas of the map.

Fig. 2 shows geo word clouds where the relative scaling between
Great Britain and Ireland is maintained. Here Ireland is sparsely
filled, because the data set contains less points for Ireland. We could
extend the algorithm to scale words relative to the area of their com-
ponent instead of to the complete map (see Fig. 8). We could also
combine our approach with contiguous area cartograms [7], to dis-
tort regions to match the required size.

Figure 8: Geo word cloud of Flickr tags in Great Britain and Ireland
after manually merging the countries (rotations of 10 degrees).

7 CONCLUSIONS

We introduced geo word clouds and experimentally evaluated them
with respect to trade-offs between different requirements and qual-
ity criteria. We found that orthogonal orientation of words yields
the most compact drawings. By using an initial font size of 90%
of the optimal size we can reduce the displacement error at the cost
of a slightly less filled map. We achieved this using a greedy algo-
rithm. We also considered a force-directed approach to place the
words without relative scaling, but this did not improve the place-
ment, in particular since we have to deal with initially massively
overlapping words.

The coverage of the map is also influenced by the clustering al-
gorithm chosen, we found that k-means clustering performs best.
The final geo word clouds produced by our algorithm add spatial
information lacking in regular word clouds. Further studies should
establish how this extra information can be utilized.
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