Trial Exam for 02141

May 7 — Spring 2013

Regular Languages and Finite Automata

Exercise 1

In this exercise we are going to study a number of languages, L_1, \dots, L_7 over the alphabet $\Sigma = \{a, b\}$. Each one will be desribed as a regular expression, as a DFA, as an NFA, as an ϵ -NFA, as a context free grammar, or as a set describing the set of strings in the language.

For each pairs of languages (L_i, L_j) we are going to determine the relationship between the languages:

- \subset We shall write $L_i \subset L_j$ whenever (1) every string in L_i also is in L_j , and (2) there is at least one string in L_j that is not in L_i .
- \supset We shall write $L_i \supset L_j$ whenever (1) every string in L_j also is in L_i , and (2) there is at least one string in L_i that is not in L_j .
- = We shall write $L_i = L_j$ whenever (1) every string in L_i also is in L_j , and (2) every string in L_j also is in L_i .
- Δ We shall write $L_i \Delta L_j$ whenever (1) there is at least one string in L_i that is not in L_j , and (2) there is at least one string in L_j that is not in L_i .

We state without proof, that for each pair of languages (L_i, L_j) , exactly one of the above possibilities apply.

Next consider the following seven languages:

- L_1 The language L_1 is described by the context free grammar with productions $S \to aS \mid bS \mid \epsilon$.
- L_2 The language L_2 is described by $\{a^nb^m \mid n \geq 0, m \geq 0\}$.
- L_3 The language L_3 is described by the transition diagram

$$\begin{array}{c|c|c|c} & a & b \\ \hline \rightarrow \star 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 3 & 3 \end{array}$$

 L_4 The language L_4 is described by $\{a^nb^n \mid n \geq 0\}$.

 L_5 The language L_5 is described by the regular expression b*a*.

 L_6 The language L_6 is described by the regular expression (ba)*.

 L_7 The language L_7 is described by $\{b^na^n \mid n \geq 0\}$.

You are required to provide your answer in the form of a table, where rows correspond to the index i and columns correspond to the index j, and entries give the classification of the pair (L_i, L_j) :

	L_1	L_2	L_3	L_4	L_5	L_6	L_7
L_1	=						\supset
L_2		=					
L_3			=				
L_4				=			
L_5					=		
L_6						=	
L_7							=

As an example, $L_1 \supset L_7$, and hence there is a \supset in the row for L_1 and the column for L_7 .

Exercise 2

Consider the following ϵ -NFA over the alphabet $\Sigma = \{a, b, c\}$:

	ϵ	a	b	c
$\rightarrow \star 1$	{2}	{1}	Ø	Ø
* 2	{3}	Ø	{2}	Ø
* 3	Ø	Ø	Ø	{3}

Convert it to a DFA using the "lazy subset construction" (see [HMU06] Section 2.5) and answer the following questions:

a How many transitions are there in the resulting DFA?

b How many accepting states are there in the resulting DFA?

Exercise 3

Consider the following DFA over the alphabet $\Sigma = \{a, b\}$:

	$\mid a \mid$	b
$\rightarrow 1$	2	5
* 2	3	4
3	2	2
4	2	2
* 5	6	7
6	5	5
7	5	5

Construct the minimized DFA using and display it in the same form used above.

Context-free Languages

Exercise 4

Consider the Context-Free Grammar G = (V, T, P, S), where

$$\begin{array}{rcl} V & = & \{\mathsf{S},\mathsf{N},\mathsf{V},\mathsf{T},\mathsf{R},\mathsf{C}\} \\ T & = & \{\;\mathsf{Mama}\;,\;\mathsf{Papa}\;,\;\mathsf{I}\;,\;\mathsf{was}\;,\;\mathsf{am}\;,\\ & & \mathsf{the}\;,\;\mathsf{King}\;,\;\mathsf{Queen}\;,\;\mathsf{of}\;,\\ & & & \mathsf{Mambo}\;,\;\mathsf{Congo}\;,\;\mathsf{Bongo}\;\} \\ S & = & \mathsf{S} \end{array}$$

and P contains the following productions:

This grammar defines a language, L(G), of (not necessarily correct) statements about yourself and your immediate ancestors.

a) Write a leftmost derivation to show that

Mama was the Queen of Mambo
$$\in L(G)$$

b) Perform a recursive inference (See e.g. [HMU06, Example 5.4]) to show that

Papa was the King of Congo
$$\in L(G)$$

c) Consider the grammar that extends G into $G' = (V \cup \{Song\}, T \cup \{and, but\}, P', Song)$, where P' is as P with the addition of

$$\mathsf{Song} \to \mathsf{S} \mid \mathsf{Song} \; \mathsf{and} \; \mathsf{Song} \mid \mathsf{Song} \; \mathsf{but} \; \mathsf{Song}$$

Why is this grammar ambiguous?

Exercise 5

Now consider the Context-Free Grammar, G'', that emerges if you restrict G to consider only the set

$$T' = \{ \text{Mama}, \text{Papa}, \text{was}, \text{the}, \text{King}, \text{Queen}, \text{of}, \text{Congo} \}$$

of terminals, i.e. discard every production where the right hand side contains a symbol not in this set.

a) Use the approach described by [HMU06, page 244] to construct a Pushdown Automaton,

$$P_N = (Q, \Sigma, \Gamma, \delta, q_0, Z_0),$$

that accepts by empty stack, i.e. such that $N(P_N) = L(G'')$. How many states and transitions does the resulting PDA have?

b) Draw P_N and extend it into a Pushdown Automaton,

$$P_F = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F),$$

that accepts by final state, i.e. such that $L(P_F) = N(P_N)$ (see [HMU06, Section 6.2.3]).

Semantics

Exercise 6

Consider the following statement written in the syntax of the **While** language:

$$z := 1$$
; while $y > 0$ do $(y := y - 1; z := z * x)$

Using the natural semantics for **While**, construct a derivation tree for this statement when executed in a state where \mathbf{x} has the value $\mathbf{3}$, \mathbf{y} has the value $\mathbf{1}$, and \mathbf{z} has the value $\mathbf{0}$. Indicate which rules you have applied by mentioning the appropriate rule name from Table 2.1 of [NN07] for each inference step.

You can use the following abbreviations in your derivations

$$\begin{array}{lll} \underline{\mathbf{w}} & = & \mathtt{while} \ \mathtt{y} > \mathtt{0} \ \mathtt{do} \ (\mathtt{y} := \mathtt{y} - \mathtt{1}; \ \mathtt{z} := \mathtt{z} * \mathtt{x}) \\ S_0 & = & \mathtt{y} := \mathtt{y} - \mathtt{1}; \ \mathtt{z} := \mathtt{z} * \mathtt{x} \end{array}$$

and you can write s_{ijk} for the state $[\mathbf{x} \mapsto i, \mathbf{y} \mapsto j, \mathbf{z} \mapsto k]$.

Exercise 7

Let s and s' be two states satisfying that $s \ x = s' \ x$ for all $x \in FV(a)$. Prove that $\mathcal{A}[\![a]\!]s = \mathcal{A}[\![a]\!]s'$.

Exercise 8

Consider the following statement S written in the syntax of the **While** language extended with the parallel construct par:

```
(x := x + 1; x := x + 1) par (while(x < 4) do (x := x * 2))
```

We assume the statement is executed in a state where x has the value 1.

- 1. Construct a derivation sequence in structural operational semantics showing that the execution of the statement can terminate in the same state where x has the value 6.
- 2. Construct a derivation tree in natural semantics showing that the execution of the statement can terminate in the same state where x has the value 5.
- 3. State all other possible results of the execution of the statement (you don't have to provide derivation sequences).
- 4. Is this statement deterministic? Why?

Hint. Always indicate which rules you have applied by mentioning the appropriate rule name(s) for each derivation step.

Exercise 9

Consider the following statement, written in the syntax of the language **Proc** that extends **While** with blocks and procedure declarations (see [NN07] Section 3.2).

```
begin
a
      var x := 0;
b
      proc p is x := x + 1;
c
      proc q is (call p; y := x + 2);
      proc r is (begin (proc p is x := x * 2); call q end)
d
         var x := 3;
e
         call r;
         call p;
f
         z := x + y
      end
   end
```

Each assignment in the program corresponds to a letter denoting the line on which it occurs. For example, x := 0 corresponds to line a, x := x + 1 corresponds to line b, and so on.

We assume that the statement is executed in a state where the variables x, y, and z have the value 0. We are interested in the sequence of assignments and the value of the different variables when the statement is executed using

- a dynamic scope rules for variables as well as procedures
- b dynamic scope rules for variables and static scope rules for procedures
- c static scope rules for variables as well as procedures

For questions **a** and **b** you are required to provide your answer in the form of a table where the first row corresponds to the sequence of assignments taken, and the remaining three rows correspond to the values of the different variables *after* the respective assignment has taken place. For example, the table for question **a** starts out as follows:

	a	e				
x	0	3				
у	0	0				
z	0	0				

For question \mathbf{c} it suffices to provide the value of the variable \mathbf{z} after termination of the program.

References

- [HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. *Introduction to Automata Theory, Languages, and Computation (3rd Edition)*. Addison-Wesley, 2006.
- [NN07] H. Riis Nielson and F. Nielson. Semantics with Applications: An Appetizer. Undergraduate Topics in Computer Science. Springer, 2007.