
Trial Exam for 02141

May 7 — Spring 2013

Regular Languages and Finite Automata

Exercise 1

In this exercise we are going to study a number of languages, L1, · · · , L7 over
the alphabet Σ = {a, b}. Each one will be desribed as a regular expression,
as a DFA, as an NFA, as an ε-NFA, as a context free grammar, or as a set
describing the set of strings in the language.

For each pairs of languages (Li, Lj) we are going to determine the rela-
tionship between the langauges:

⊂ We shall write Li ⊂ Lj whenever (1) every string in Li also is in Lj , and
(2) there is at least one string in Lj that is not in Li.

⊃ We shall write Li ⊃ Lj whenever (1) every string in Lj also is in Li, and
(2) there is at least one string in Li that is not in Lj .

= We shall write Li = Lj whenever (1) every string in Li also is in Lj , and
(2) every string in Lj also is in Li.

∆ We shall write Li∆Lj whenever (1) there is at least one string in Li that
is not in Lj , and (2) there is at least one string in Lj that is not in Li.

We state without proof, that for each pair of languages (Li, Lj), exactly one
of the above possibilities apply.

Next consider the following seven languages:

L1 The language L1 is described by the context free grammar with produc-
tions S → aS | bS | ε.

L2 The language L2 is described by {anbm | n ≥ 0,m ≥ 0}.

L3 The language L3 is described by the transition diagram

a b

→ ?1 2 3
2 3 1
3 3 3

1

L4 The language L4 is described by {anbn | n ≥ 0}.

L5 The language L5 is described by the regular expression b∗a∗.

L6 The language L6 is described by the regular expression (ba)∗.

L7 The language L7 is described by {bnan | n ≥ 0}.

You are required to provide your answer in the form of a table, where rows
correspond to the index i and columns correspond to the index j, and entries
give the classification of the pair (Li, Lj):

L1 L2 L3 L4 L5 L6 L7

L1 = ⊃
L2 =

L3 =

L4 =

L5 =

L6 =

L7 =

As an example, L1 ⊃ L7, and hence there is a ⊃ in the row for L1 and the
column for L7.

Exercise 2

Consider the following ε-NFA over the alphabet Σ = {a, b, c}:

ε a b c

→ ?1 {2} {1} ∅ ∅
?2 {3} ∅ {2} ∅
?3 ∅ ∅ ∅ {3}

Convert it to a DFA using the “lazy subset construction” (see [HMU06]
Section 2.5) and answer the following questions:

a How many transitions are there in the resulting DFA?

b How many accepting states are there in the resulting DFA?

2

Exercise 3

Consider the following DFA over the alphabet Σ = {a, b}:

a b

→ 1 2 5
?2 3 4
3 2 2
4 2 2
?5 6 7
6 5 5
7 5 5

Construct the minimized DFA using and display it in the same form used
above.

Context-free Languages

Exercise 4

Consider the Context-Free Grammar G = (V, T, P, S), where

V = {S,N,V,T,R,C}
T = { Mama , Papa , I , was , am ,

the , King , Queen , of ,
Mambo , Congo , Bongo }

S = S

and P contains the following productions:

S → N V T
N → Mama | Papa | I

V → was | am

T → the R of C
R → King | Queen

C → Mambo | Congo | Bongo

This grammar defines a language, L(G), of (not necessarily correct) state-
ments about yourself and your immediate ancestors.

a) Write a leftmost derivation to show that

Mama was the Queen of Mambo ∈ L(G)

b) Perform a recursive inference (See e.g. [HMU06, Example 5.4]) to show
that

Papa was the King of Congo ∈ L(G)

3

c) Consider the grammar that extends G into G′ = (V ∪ {Song}, T ∪
{ and , but }, P ′,Song), where P ′ is as P with the addition of

Song→ S | Song and Song | Song but Song

Why is this grammar ambiguous?

Exercise 5

Now consider the Context-Free Grammar, G′′, that emerges if you restrict
G to consider only the set

T ′ = { Mama , Papa , was , the , King , Queen , of , Congo }

of terminals, i.e. discard every production where the right hand side contains
a symbol not in this set.

a) Use the approach described by [HMU06, page 244] to construct a Push-
down Automaton,

PN = (Q,Σ,Γ, δ, q0, Z0),

that accepts by empty stack, i.e. such that N(PN) = L(G′′). How many
states and transitions does the resulting PDA have?

b) Draw PN and extend it into a Pushdown Automaton,

PF = (Q,Σ,Γ, δ, q0, Z0, F),

that accepts by final state, i.e. such that L(PF) = N(PN) (see [HMU06,
Section 6.2.3]).

Semantics

Exercise 6

Consider the following statement written in the syntax of the While lan-
guage:

z := 1; while y > 0 do (y := y− 1; z := z ∗ x)

Using the natural semantics for While, construct a derivation tree for this
statement when executed in a state where x has the value 3, y has the
value 1, and z has the value 0. Indicate which rules you have applied by
mentioning the appropriate rule name from Table 2.1 of [NN07] for each
inference step.

You can use the following abbreviations in your derivations

w = while y > 0 do (y := y− 1; z := z ∗ x)
S0 = y := y− 1; z := z ∗ x

and you can write sijk for the state [x 7→ i, y 7→ j, z 7→ k].

4

Exercise 7

Let s and s′ be two states satisfying that s x = s′ x for all x ∈ FV (a). Prove
that A[[a]]s = A[[a]]s′.

Exercise 8

Consider the following statement S written in the syntax of the While
language extended with the parallel construct par:

(x := x + 1; x := x + 1) par (while(x < 4) do (x := x ∗ 2))

We assume the statement is executed in a state where x has the value 1.

1. Construct a derivation sequence in structural operational semantics
showing that the execution of the statement can terminate in the same
state where x has the value 6.

2. Construct a derivation tree in natural semantics showing that the ex-
ecution of the statement can terminate in the same state where x has
the value 5.

3. State all other possible results of the execution of the statement (you
don’t have to provide derivation sequences).

4. Is this statement deterministic? Why?

Hint. Always indicate which rules you have applied by mentioning the
appropriate rule name(s) for each derivation step.

Exercise 9

Consider the following statement, written in the syntax of the language Proc
that extends While with blocks and procedure declarations (see [NN07]
Section 3.2).

begin

a var x := 0;
b proc p is x := x + 1;
c proc q is (call p; y := x + 2);
d proc r is (begin (proc p is x := x ∗ 2); call q end)

begin

e var x := 3;
call r;
call p;

f z := x + y

end

end

5

Each assignment in the program corresponds to a letter denoting the line
on which it occurs. For example, x := 0 corresponds to line a, x := x + 1

corresponds to line b, and so on.
We assume that the statement is executed in a state where the variables

x, y, and z have the value 0. We are interested in the sequence of assignments
and the value of the different variables when the statement is executed using

a dynamic scope rules for variables as well as procedures

b dynamic scope rules for variables and static scope rules for procedures

c static scope rules for variables as well as procedures

For questions a and b you are required to provide your answer in the form
of a table where the first row corresponds to the sequence of assignments
taken, and the remaining three rows correspond to the values of the different
variables after the respective assignment has taken place. For example, the
table for question a starts out as follows:

a e

x 0 3 ...

y 0 0 ...

z 0 0

For question c it suffices to provide the value of the variable z after termi-
nation of the program.

References

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition).
Addison-Wesley, 2006.

[NN07] H. Riis Nielson and F. Nielson. Semantics with Applications: An
Appetizer. Undergraduate Topics in Computer Science. Springer,
2007.

6

