Trial Exam for 02141

May 7 - Spring 2013

Regular Languages and Finite Automata

Exercise 1

In this exercise we are going to study a number of languages, L_{1}, \cdots, L_{7} over the alphabet $\Sigma=\{a, b\}$. Each one will be desribed as a regular expression, as a DFA, as an NFA, as an ϵ-NFA, as a context free grammar, or as a set describing the set of strings in the language.

For each pairs of languages (L_{i}, L_{j}) we are going to determine the relationship between the langauges:
\subset We shall write $L_{i} \subset L_{j}$ whenever (1) every string in L_{i} also is in L_{j}, and (2) there is at least one string in L_{j} that is not in L_{i}.
\supset We shall write $L_{i} \supset L_{j}$ whenever (1) every string in L_{j} also is in L_{i}, and (2) there is at least one string in L_{i} that is not in L_{j}.
$=$ We shall write $L_{i}=L_{j}$ whenever (1) every string in L_{i} also is in L_{j}, and (2) every string in L_{j} also is in L_{i}.
Δ We shall write $L_{i} \Delta L_{j}$ whenever (1) there is at least one string in L_{i} that is not in L_{j}, and (2) there is at least one string in L_{j} that is not in L_{i}.
We state without proof, that for each pair of languages (L_{i}, L_{j}), exactly one of the above possibilities apply.

Next consider the following seven languages:
L_{1} The language L_{1} is described by the context free grammar with productions $S \rightarrow a S|b S| \epsilon$.
L_{2} The language L_{2} is described by $\left\{a^{n} b^{m} \mid n \geq 0, m \geq 0\right\}$.
L_{3} The language L_{3} is described by the transition diagram

	a	b
$\rightarrow \star 1$	2	3
2	3	1
3	3	3

L_{4} The language L_{4} is described by $\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
L_{5} The language L_{5} is described by the regular expression $b * a *$.
L_{6} The language L_{6} is described by the regular expression ($b a$)*.
L_{7} The language L_{7} is described by $\left\{b^{n} a^{n} \mid n \geq 0\right\}$.
You are required to provide your answer in the form of a table, where rows correspond to the index i and columns correspond to the index j, and entries give the classification of the pair $\left(L_{i}, L_{j}\right)$:

	L_{1}	L_{2}	L_{3}	L_{4}	L_{5}	L_{6}	L_{7}
L_{1}	$=$						\supset
L_{2}		$=$					
L_{3}			$=$				
L_{4}				$=$			
L_{5}					$=$		
L_{6}						$=$	
L_{7}							$=$

As an example, $L_{1} \supset L_{7}$, and hence there is a \supset in the row for L_{1} and the column for L_{7}.

Exercise 2

Consider the following ϵ-NFA over the alphabet $\Sigma=\{a, b, c\}$:

	ϵ	a	b	c
$\rightarrow \star 1$	$\{2\}$	$\{1\}$	\emptyset	\emptyset
$\star 2$	$\{3\}$	\emptyset	$\{2\}$	\emptyset
$\star 3$	\emptyset	\emptyset	\emptyset	$\{3\}$

Convert it to a DFA using the "lazy subset construction" (see [HMU06] Section 2.5) and answer the following questions:
a How many transitions are there in the resulting DFA?
b How many accepting states are there in the resulting DFA?

Exercise 3

Consider the following DFA over the alphabet $\Sigma=\{a, b\}$:

	a	b
$\rightarrow 1$	2	5
$\star 2$	3	4
3	2	2
4	2	2
$\star 5$	6	7
6	5	5
7	5	5

Construct the minimized DFA using and display it in the same form used above.

Context-free Languages

Exercise 4

Consider the Context-Free Grammar $G=(V, T, P, S)$, where

$$
\begin{aligned}
V= & \{\mathrm{S}, \mathrm{~N}, \mathrm{~V}, \mathrm{~T}, \mathrm{R}, \mathrm{C}\} \\
T= & \text { M Mama, Papa, I, was, am }, \\
& \quad \text { the, King, Queen, of }, \\
& \quad \text { Mambo, Congo, Bongo }\} \\
S= & \mathrm{S}
\end{aligned}
$$

and P contains the following productions:

$$
\begin{array}{ll|l|l}
\mathrm{S} & \rightarrow \mathrm{~N} \mathrm{~V} \mathrm{~T} \\
\mathrm{~N} & \rightarrow \text { Mama } \mid \text { Papa } \mid & \mathrm{I} \\
\mathrm{~V} & \rightarrow \text { was | am } & \\
\mathrm{T} \rightarrow \text { the } \mathrm{R} \text { of } \mathrm{C} \\
\mathrm{R} \rightarrow \text { King | Queen } & \\
\mathrm{C} \rightarrow \text { Mambo | Congo | Bongo }
\end{array}
$$

This grammar defines a language, $L(G)$, of (not necessarily correct) statements about yourself and your immediate ancestors.
a) Write a leftmost derivation to show that

$$
\text { Mama was the Queen of Mambo } \in L(G)
$$

b) Perform a recursive inference (See e.g. [HMU06, Example 5.4]) to show that

$$
\text { Papa was the King of Congo } \in L(G)
$$

c) Consider the grammar that extends G into $G^{\prime}=(V \cup\{$ Song $\}, T \cup$ \{ and, but \}, P^{\prime}, Song), where P^{\prime} is as P with the addition of

$$
\text { Song } \rightarrow \text { S } \mid \text { Song and Song } \mid \text { Song but Song }
$$

Why is this grammar ambiguous?

Exercise 5

Now consider the Context-Free Grammar, $G^{\prime \prime}$, that emerges if you restrict G to consider only the set

$$
T^{\prime}=\{\text { Mama }, \text { Papa, was , the , King, Queen, of , Congo }\}
$$

of terminals, i.e. discard every production where the right hand side contains a symbol not in this set.
a) Use the approach described by [HMU06, page 244] to construct a Pushdown Automaton,

$$
P_{N}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}\right)
$$

that accepts by empty stack, i.e. such that $N\left(P_{N}\right)=L\left(G^{\prime \prime}\right)$. How many states and transitions does the resulting PDA have?
b) Draw P_{N} and extend it into a Pushdown Automaton,

$$
P_{F}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)
$$

that accepts by final state, i.e. such that $L\left(P_{F}\right)=N\left(P_{N}\right)$ (see [HMU06, Section 6.2.3]).

Semantics

Exercise 6

Consider the following statement written in the syntax of the While language:

$$
\mathrm{z}:=1 ; \text { while } \mathrm{y}>0 \text { do }(\mathrm{y}:=\mathrm{y}-1 ; \mathrm{z}:=\mathrm{z} * \mathrm{x})
$$

Using the natural semantics for While, construct a derivation tree for this statement when executed in a state where x has the value $\mathbf{3}$, y has the value $\mathbf{1}$, and \mathbf{z} has the value $\mathbf{0}$. Indicate which rules you have applied by mentioning the appropriate rule name from Table 2.1 of [NN07] for each inference step.

You can use the following abbreviations in your derivations

$$
\begin{aligned}
& \underline{\mathrm{w}}=\text { while } \mathrm{y}>0 \text { do }(\mathrm{y}:=\mathrm{y}-1 ; \mathrm{z}:=\mathrm{z} * \mathrm{x}) \\
& S_{0}=\mathrm{y}:=\mathrm{y}-1 ; \mathrm{z}:=\mathrm{z} * \mathrm{x}
\end{aligned}
$$

and you can write $s_{i j k}$ for the state $[\mathrm{x} \mapsto i, \mathrm{y} \mapsto j, \mathrm{z} \mapsto k]$.

Exercise 7

Let s and s^{\prime} be two states satisfying that $s x=s^{\prime} x$ for all $x \in F V(a)$. Prove that $\mathcal{A} \llbracket a \rrbracket s=\mathcal{A} \llbracket a \rrbracket s^{\prime}$.

Exercise 8

Consider the following statement S written in the syntax of the While language extended with the parallel construct par:

$$
(x:=x+1 ; x:=x+1) \operatorname{par}(\operatorname{while}(x<4) \text { do }(x:=x * 2))
$$

We assume the statement is executed in a state where x has the value 1 .

1. Construct a derivation sequence in structural operational semantics showing that the execution of the statement can terminate in the same state where x has the value 6 .
2. Construct a derivation tree in natural semantics showing that the execution of the statement can terminate in the same state where x has the value 5 .
3. State all other possible results of the execution of the statement (you don't have to provide derivation sequences).
4. Is this statement deterministic? Why?

Hint. Always indicate which rules you have applied by mentioning the appropriate rule name(s) for each derivation step.

Exercise 9

Consider the following statement, written in the syntax of the language Proc that extends While with blocks and procedure declarations (see [NN07] Section 3.2).

```
begin
    var x \(:=0\);
\(b \quad \operatorname{proc} p\) is \(\mathrm{x}:=\mathrm{x}+1\);
\(c \quad\) proc q is (call \(\mathrm{p} ; \mathrm{y}:=\mathrm{x}+2\) );
\(d \quad \operatorname{proc} r\) is (begin (proc p is \(\mathrm{x}:=\mathrm{x} * 2\) ); call q end)
    begin
            \(\operatorname{var} \mathrm{x}:=3\)
            call r;
            call p;
            \(\mathrm{z}:=\mathrm{x}+\mathrm{y}\)
        end
    end
```

Each assignment in the program corresponds to a letter denoting the line on which it occurs. For example, $\mathrm{x}:=0$ corresponds to line $a, \mathrm{x}:=\mathrm{x}+1$ corresponds to line b, and so on.

We assume that the statement is executed in a state where the variables \mathbf{x}, y, and \mathbf{z} have the value $\mathbf{0}$. We are interested in the sequence of assignments and the value of the different variables when the statement is executed using
a dynamic scope rules for variables as well as procedures
b dynamic scope rules for variables and static scope rules for procedures
c static scope rules for variables as well as procedures
For questions a and \mathbf{b} you are required to provide your answer in the form of a table where the first row corresponds to the sequence of assignments taken, and the remaining three rows correspond to the values of the different variables after the respective assignment has taken place. For example, the table for question a starts out as follows:

	a	e	\ldots				
x	0	3	\ldots				
y	0	0	\ldots				
z	0	0	\ldots				

For question \mathbf{c} it suffices to provide the value of the variable \mathbf{z} after termination of the program.

References

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley, 2006.
[NN07] H. Riis Nielson and F. Nielson. Semantics with Applications: An Appetizer. Undergraduate Topics in Computer Science. Springer, 2007.

