Technical University of Denmark

Written examination, date June 3rd, 2013

Page 1 of 10 pages

Course name: Computer Science Modelling

Course number: 02141

Aids allowed: All written aids are permitted

Exam duration: 4 hours

Weighting: 7 step scale

02141 Computer Science Modelling

Regular languages (30pt)

Exercise 1 (5\%) Let $\Sigma=\{0,1\}$ and consider the following four languages:

- L_{1} is given by the DFA with the following transition relation:

- L_{2} is defined by the NFA with the following transition relation:

- L_{3} is defined by the ϵ-NFA with the following transition relation:

- L_{4} is given by the regular expression $\left(0+11^{*} 0\right)\left(0+11^{*} 0\right)^{*}+\epsilon+11^{*}$

Fill out the following table with a yes if the string in the column is a member of the language in the row and a no if it is not a member of the language:

	0101	01010	0101001	110110
L_{1}				
L_{2}				
L_{3}				
L_{4}				

02141 Computer Science Modelling

Exercise 2 (15\%) Let L be a set of strings over the alphabet Σ. Define

$$
\begin{array}{ll}
\text { the prefixes of } L: & \operatorname{Pre}(L)=\left\{x \in \Sigma^{*} \mid \exists y \in \Sigma^{*}: x y \in L\right\} \\
\text { the suffixes of } L: & \operatorname{Suf}(L)=\left\{z \in \Sigma^{*} \mid \exists x \in \Sigma^{*}: x z \in L\right\} \\
\text { the substrings of } L: & \operatorname{Sub}(L)=\left\{y \in \Sigma^{*} \mid \exists x, z \in \Sigma^{*}: x y z \in L\right\}
\end{array}
$$

Prove the following results:
(a) If L is a regular language then so is $\operatorname{Pre}(L)$.
(b) If L is a regular language then so is $\operatorname{Suf}(L)$.
(c) If L is a regular language then so is $\operatorname{Sub}(L)$.

Exercise 3 (10\%) Consider the following language

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 ; i=1 \Rightarrow j=k\right\}
$$

Is L a regular language? Present an argument for why this is the case or why it is not the case.

02141 Computer Science Modelling

Context-Free Languages (30pt)

A Grammar For Lists We design a small part of a programming language to represent lists of integers. We have a symbol "nil" for the empty list, and an infix operator " cons" that works as follows: if i is an integer and l is an integer list, then i cons l is the list the results from pre-pending i to list l. For instance the integer list $0,2,1,2$ can be represent as

0 cons 2 cons 1 cons 2 cons nil

To describe this language, we use the following Context-Free Grammar $G=$ (V, T, S, P) where

$$
\begin{aligned}
& V=\{\mathrm{S}, \mathrm{E}\} \\
& T=\{\text { nil }, \text { cons }, 0,1,2,3\} \\
& S=S
\end{aligned}
$$

and P contains the following productions:

$$
\begin{aligned}
& S \rightarrow \text { nil } \mid E \text { cons } S \\
& E \rightarrow 0|1| 2 \mid 3
\end{aligned}
$$

Here for simplicity, we consider here only the integers $0, \ldots, 3$.

Exercise 4 (5\%) Show how to derive the word 0 cons 2 cons 1 cons 2 cons nil from the start symbol S and draw the parse tree.

02141 Computer Science Modelling

A More Convenient Notation While this notation with nil and cons is convenient for programming with lists it looks a bit ugly. Therefore we want to additionally give the programming language a notation of comma-separated lists that are enclosed by square brackets, for instance

$$
[0,2,1,2]
$$

should be an alternative notation for list 0 cons 2 cons 1 cons 2 cons nil.

Exercise 5 (7\%) Extend the set of terminal, variable symbols and productions of the above grammar to allow this notation of lists.

Abstract

Syntax In order to actually realize this part of a programming language, we need to define abstract data structures to store the result of parsing an input program.

Exercise 6 (5\%) Define Java data structures that can hold the integer lists after parsing. Hint: you can either use vectors of integers or linked lists.

Exercise 7 (6\%) Describe the link between the concrete syntax-the grammar from Exercise 1 and Exercise 2-and the abstract syntax-the Java data structures from Exercise 3. You are free to choose how to describe this (e.g. by a diagram or by ANTLR-style annotation of the grammar).

02141 Computer Science Modelling

Going to Far A crazy programmer that uses our programming language would like an extension that allows for "lists of lists" and suggests to simply add this production rule to the grammar:

$$
\mathrm{E} \rightarrow \mathrm{~S}
$$

thus allowing that a list element can also be list.

Exercise 8 (7\%) Show that with this addition the grammar becomes ambiguous. Hint: give two different parse trees for the word:

$$
0 \text { cons } 1 \text { cons nil cons nil }
$$

02141 Computer Science Modelling

Semantics (40pt)

Assuming that the domain of numerals and arithmetic expressions are bounded, say $\{0,1, \ldots, 7\}$. The semantics of numerals is given by:

$$
\begin{aligned}
\mathcal{N} \llbracket 0 \rrbracket & =\mathbf{0} \\
\mathcal{N} \llbracket 1 \rrbracket & =\mathbf{1} \\
\mathcal{N} \llbracket n 0 \rrbracket & =(\mathbf{2} \cdot \mathcal{N} \llbracket n \rrbracket) \quad \bmod 8 \\
\mathcal{N} \llbracket n 1 \rrbracket & =(\mathbf{2} \cdot \mathcal{N} \llbracket n \rrbracket+\mathbf{1}) \quad \bmod 8
\end{aligned}
$$

and the semantics for arithmetic expressions (see Table 1.1 in NN) are given by:

$$
\left.\begin{array}{rl}
\mathcal{A} \llbracket n \rrbracket & =\mathcal{N} \llbracket n \rrbracket \\
\mathcal{A} \llbracket x \rrbracket & =(s x) \quad \bmod 8 \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket & =\left(\mathcal{A} \llbracket a_{1} \rrbracket+\mathcal{A} \llbracket a_{2} \rrbracket\right) \\
\mathcal{A} \llbracket a_{1} * a_{2} \rrbracket & \bmod 8 \\
\mathcal{A} \llbracket a_{1}-a_{2} \rrbracket & =\left(\mathcal{A} \llbracket a_{1} \rrbracket * \mathcal{A} \llbracket a_{2} \rrbracket\right) \\
\bmod 8 \\
\hline
\end{array}\right)
$$

The semantics for boolean expressions, the natural and structural operational semantics are not changed. We refer to the extended language Bounded While.

Exercise 9 (8\%)

1. In the semantics for arithmetic expressions given above, please indicate for each line whether it

- corresponds to a basic element, or
- corresponds to a composite element of arithmetic expressions.

2. Suppose we want to prove the following statement:

- Let s and s^{\prime} be two states satisfying that $s x=s^{\prime} x$ for all x in $F V(a)$. Show that it holds $\mathcal{A} \llbracket a \rrbracket s=\mathcal{A} \llbracket a \rrbracket s^{\prime}$

What proof technique should be used? Moreover, assume we are now considering the case that a has the form $a_{1}+a_{2}$. Please write down the induction hypothesis (you do not need to carry out the proof itself).

02141 Computer Science Modelling

Exercise 10 (12\%)

Consider the following statement in the Bounded While, denoted by S :

$$
i:=n \text {; while }(i>0) \text { do }(\text { sum }:=\operatorname{sum}+i ; i:=i-1)
$$

1. Does the following hold?

$$
\begin{equation*}
\langle S,[\mathrm{n} \mapsto \mathbf{2}, \text { sum } \mapsto \mathbf{0}, \mathrm{i} \mapsto \mathbf{1}]\rangle \rightarrow[\mathrm{n} \mapsto \mathbf{2}, \text { sum } \mapsto \mathbf{3}, \mathrm{i} \mapsto \mathbf{0}] \tag{1}
\end{equation*}
$$

Explain why if not, and construct the derivation tree if yes.
2. Does the following hold?

$$
\begin{equation*}
\langle S,[\mathrm{n} \mapsto 4 \text {, sum } \mapsto \mathbf{0}, \mathrm{i} \mapsto 2]\rangle \rightarrow[\mathrm{n} \mapsto 4, \text { sum } \mapsto 10, \mathrm{i} \mapsto 0] \tag{2}
\end{equation*}
$$

Explain why if not, and construct the derivation tree if yes.
3. Does the statement terminate for all state? Why?

You can use the following abbreviations in your derivations:

$$
\begin{aligned}
\underline{w} & =\text { while }(i>0) \text { do }(\text { sum }:=s u m+i ; i:=i-1) \\
S_{0} & =\text { sum }:=\operatorname{sum}+i ; i:=i-1
\end{aligned}
$$

and you can write $s_{k_{1} k_{2} k_{3}}$ for the state [$\mathrm{n} \mapsto \mathbf{k}_{\mathbf{1}}$, sum $\mapsto \mathbf{k}_{\mathbf{2}}$, $\mathbf{i} \mapsto \mathbf{k}_{\mathbf{3}}$].

02141 Computer Science Modelling

Exercise 11 (8\%) We say a configuration $\langle S, s\rangle$ is stuck free, if there exists at least one γ such that $\langle S, s\rangle \Rightarrow \gamma$. Prove that for any statement S of the Bounded While, $\langle S, s\rangle$ is stuck free.

Exercise 12 (12\%) Consider the following statement S :

$$
\text { (while }(x<7) \text { do }(x:=x+2) \text {) par }(x:=x * 2 \text { or } x:=x * 3)
$$

in the Bounded While extended with nondeterminism and parallelism extensions (semantics for them are not changed, i.e., the same as in pages 50 and 52 in [NN07] respectively). We assume the statement is executed in a state where x has the value 2 .

1. Construct two different derivation sequences in structural operational semantics showing that the execution of the statement can terminate in the same state where x has the value 8 .
2. State all other possible results of the execution of the statement (you don't have to provide derivation sequences).

You can use the following abbreviations in your derivations:

$$
\begin{aligned}
& S_{0}=x:=x+2 \\
& S_{1}=\text { while }(x<7) \text { do }(x:=x+2) \\
& S_{2}=x:=x * 2 \text { or } x:=x * 3
\end{aligned}
$$

and you can write s_{k} for the state [$\mathbf{s} \mapsto \mathbf{k}$].
Hint. Always indicate which rules you have applied by mentioning the appropriate rule name(s) for each derivation step.

