DTU

Technical University of Denmark

Written examination, date June 3rd, 2013

Page 1 of 10 pages

Course name: Computer Science Modelling

Course number: 02141

Aids allowed: All written aids are permitted

Exam duration: 4 hours

Weighting: 7 step scale

Regular languages (30pt)

Exercise 1 (5%) Let $\Sigma = \{0, 1\}$ and consider the following four languages:

• L_1 is given by the DFA with the following transition relation:

• L_2 is defined by the NFA with the following transition relation:

• L_3 is defined by the ϵ -NFA with the following transition relation:

• L_4 is given by the regular expression $(0 + 11^*0)(0 + 11^*0)^* + \epsilon + 11^*$

Fill out the following table with a yes if the string in the column is a member of the language in the row and a no if it is not a member of the language:

	0101	01010	0101001	110110
L_1				
L_2				
L_3				
L_4				

Technical University of Denmark

page 2 of 10

Exercise 2 (15%) Let L be a set of strings over the alphabet Σ . Define

the prefixes of L :	Pre(L)	=	$\{x\in \Sigma^*$	$\mid \exists y \in \Sigma^* : xy \in L\}$
the suffixes of L :	Suf(L)	=	$\{z\in \Sigma^*$	$ \exists x \in \Sigma^* : xz \in L \}$
the substrings of L :	Sub(L)	=	$\{y\in \Sigma^*$	$\exists x, z \in \Sigma^* : xyz \in L$

Prove the following results:

- (a) If L is a regular language then so is Pre(L).
- (b) If L is a regular language then so is Suf(L).
- (c) If L is a regular language then so is Sub(L).

Exercise 3 (10%) Consider the following language

 $L = \{a^i b^j c^k \mid i, j, k \ge 0; i = 1 \Rightarrow j = k\}$

Is L a regular language? Present an argument for why this is the case – or why it is not the case.

Technical University of Denmark

page 3 of 10

Context-Free Languages (30pt)

A Grammar For Lists We design a small part of a programming language to represent lists of integers. We have a symbol "nil" for the empty list, and an infix operator "cons" that works as follows: if i is an integer and l is an integer list, then i cons l is the list the results from pre-pending i to list l. For instance the integer list 0, 2, 1, 2 can be represent as

 $0 \ \mathrm{cons} \ 2 \ \mathrm{cons} \ 1 \ \mathrm{cons} \ 2 \ \mathrm{cons} \ \mathrm{nil}$

To describe this language, we use the following Context-Free Grammar G = (V, T, S, P) where

$$V = \{ S, E \}$$

$$T = \{ nil, cons, 0, 1, 2, 3 \}$$

$$S = S$$

and P contains the following productions:

$$S \rightarrow \text{nil} | E \text{ cons } S$$

 $E \rightarrow 0 | 1 | 2 | 3$

Here for simplicity, we consider here only the integers $0, \ldots, 3$.

Exercise 4 (5%) Show how to derive the word 0 cons 2 cons 1 cons 2 cons nil from the start symbol S and draw the parse tree.

Technical University of Denmark

A More Convenient Notation While this notation with nil and cons is convenient for programming with lists it looks a bit ugly. Therefore we want to additionally give the programming language a notation of comma-separated lists that are enclosed by square brackets, for instance

[0, 2, 1, 2]

should be an alternative notation for list 0 cons 2 cons 1 cons 2 cons nil .

Exercise 5 (7%) Extend the set of terminal, variable symbols and productions of the above grammar to allow this notation of lists.

Technical University of Denmark

page 5 of 10

Abstract Syntax In order to actually realize this part of a programming language, we need to define abstract data structures to store the result of parsing an input program.

Exercise 6 (5%) Define Java data structures that can hold the integer lists after parsing. Hint: you can either use vectors of integers or linked lists.

Exercise 7 (6%) Describe the link between the concrete syntax—the grammar from *Exercise* 1 and *Exercise* 2—and the abstract syntax—the Java data structures from *Exercise* 3. You are free to choose how to describe this (e.g. by a diagram or by ANTLR-style annotation of the grammar).

Technical University of Denmark

page 6 of 10

Going to Far A crazy programmer that uses our programming language would like an extension that allows for "lists of lists" and suggests to simply add this production rule to the grammar:

$\mathsf{E}\to\mathsf{S}$

thus allowing that a list element can also be list.

Exercise 8 (7%) Show that with this addition the grammar becomes ambiguous. Hint: give two different parse trees for the word:

0 cons 1 cons nil cons nil

Technical University of Denmark

page 7 of 10

Semantics (40pt)

Assuming that the domain of numerals and arithmetic expressions are bounded, say $\{0, 1, \ldots, 7\}$. The semantics of numerals is given by:

 $\mathcal{N}[\![0]\!] = 0$ $\mathcal{N}[\![1]\!] = 1$ $\mathcal{N}[\![n \ 0]\!] = (2 \cdot \mathcal{N}[\![n]\!]) \mod 8$ $\mathcal{N}[\![n \ 1]\!] = (2 \cdot \mathcal{N}[\![n]\!] + 1) \mod 8$

and the semantics for arithmetic expressions (see Table 1.1 in NN) are given by:

 $\mathcal{A}[\![n]\!] = \mathcal{N}[\![n]\!]$ $\mathcal{A}[\![x]\!] = (s \ x) \mod 8$ $\mathcal{A}[\![a_1 + a_2]\!] = (\mathcal{A}[\![a_1]\!] + \mathcal{A}[\![a_2]\!]) \mod 8$ $\mathcal{A}[\![a_1 * a_2]\!] = (\mathcal{A}[\![a_1]\!] * \mathcal{A}[\![a_2]\!]) \mod 8$ $\mathcal{A}[\![a_1 - a_2]\!] = (\mathcal{A}[\![a_1]\!] - \mathcal{A}[\![a_2]\!]) \mod 8$

The semantics for boolean expressions, the natural and structural operational semantics are not changed. We refer to the extended language *Bounded While*.

Exercise 9 (8%)

- 1. In the semantics for arithmetic expressions given above, please indicate for each line whether it
 - corresponds to a basic element, or
 - corresponds to a composite element of arithmetic expressions.

2. Suppose we want to prove the following statement:

• Let s and s' be two states satisfying that sx = s'x for all x in FV(a). Show that it holds $\mathcal{A}[\![a]\!]s = \mathcal{A}[\![a]\!]s'$

What proof technique should be used? Moreover, assume we are now considering the case that a has the form $a_1 + a_2$. Please write down the induction hypothesis (you do not need to carry out the proof itself).

Technical University of Denmark

Exercise 10 (12%)

Consider the following statement in the Bounded While, denoted by S:

i:=n; while (i>0) do (sum:=sum+i; i:=i-1)

1. Does the following hold?

$$\langle S, [n \mapsto 2, \text{sum} \mapsto 0, i \mapsto 1] \rangle \rightarrow [n \mapsto 2, \text{sum} \mapsto 3, i \mapsto 0]$$
 (1)

Explain why if not, and construct the derivation tree if yes.

2. Does the following hold?

$$\langle S, [n \mapsto 4, \text{sum} \mapsto 0, i \mapsto 2] \rangle \rightarrow [n \mapsto 4, \text{sum} \mapsto 10, i \mapsto 0]$$
 (2)

Explain why if not, and construct the derivation tree if yes.

3. Does the statement terminate for all state? Why?

You can use the following abbreviations in your derivations:

 $\label{eq:sum} \begin{array}{l} \underline{w} = \texttt{while} \ (i > 0) \ \texttt{do} \ (sum := sum + i; \ i := i - 1) \\ S_0 = sum := sum + i; \ i := i - 1 \end{array}$

and you can write $s_{k_1k_2k_3}$ for the state $[n \mapsto k_1, \text{sum} \mapsto k_2, i \mapsto k_3]$.

Technical University of Denmark

Exercise 11 (8%) We say a configuration $\langle S, s \rangle$ is stuck free, if there exists at least one γ such that $\langle S, s \rangle \Rightarrow \gamma$. Prove that for any statement S of the Bounded While, $\langle S, s \rangle$ is stuck free.

Exercise 12 (12%) Consider the following statement S:

(while (x < 7) do (x := x + 2)) par (x := x * 2 or x := x * 3)

in the Bounded While extended with nondeterminism and parallelism extensions (semantics for them are not changed, i.e., the same as in pages 50 and 52 in [NN07] respectively). We assume the statement is executed in a state where x has the value 2.

- 1. Construct two different derivation sequences in structural operational semantics showing that the execution of the statement can terminate in the same state where x has the value 8.
- 2. State all other possible results of the execution of the statement (you don't have to provide derivation sequences).

You can use the following abbreviations in your derivations:

 $\begin{array}{l} S_0 = x := x+2\\ S_1 = \texttt{while} \ (x < 7) \ \texttt{do} \ (x := x+2)\\ S_2 = x := x*2 \ \texttt{or} \ x := x*3 \end{array}$

and you can write s_k for the state $[\mathbf{s} \mapsto \mathbf{k}]$.

Hint. Always indicate which rules you have applied by mentioning the appropriate rule name(s) for each derivation step.

Technical University of Denmark

page 10 of 10